C.U.SHAH UNIVERSITY
 WADHWAN CITY
 University (Winter) Examination -2013
 Subject Name: - Fundamental of Electrical Engineering

Marks :70
Duration :- 2:30 Hours
Date : 20/12/2013
Instructions:-
(1) Attempt all Questions of both sections in same answer book / Supplementary.
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places.
(5) Assume suitable \& Perfect data if needed.

SECTION - I

Q. 1 (a) State Ohm's law. 1
(b) Define Resistivity $\quad 1$
(c) Define Magnetic flux density. 1
(d) Define Electric flux density. 1
(e) Define permittivity. 1
(f) State \& Discuss Coulomb’s law. 2
Q. 2 (a) Derive the expression for delta to star conversion of resistive network. 05
(b) Define temperature co-efficient of resistance. Prove that $\alpha_{t}=\alpha_{0} /\left(1+\alpha_{0} t\right)$.
(c) State and Explain the Kirchhoff's currontand yoltage laws.
Q. 2 (a) Determine the equivalent resistănce we meent the terminals A and B of network shown in figure 1.

(b) A coil has 25 ohm resistance at $40^{\circ} \mathrm{C}$ and 45 ohm at $100^{\circ} \mathrm{C}$. Find its resistance 05 and resistance temperature coefficient at $0^{0} \mathrm{C}$.
(c) Explain effect of temperature on resistance of conductors, semiconductors and 04 insulators.
Q. 3 (a) Derive equation for charging of capacitor in RC circuit. Also define time constant 05 of circuit.
(b) An iron ring of 40 cm mean diameter and $7 \mathrm{~cm}^{2}$ cross section has an air gap of 05 2 mm . it is informally wound with 750 turns of wire and carries a current of 3A. The iron takes 60% of the total mmf. Neglect magnetic leakage. Find the total mmf, magnetic flux, reluctance and flux density.
(c) Explain Magnetic Hysteresis.
Q. 3 (a) A parallel plate capacitor has a plate area of $4 \mathrm{~cm}^{2}$. The plates are separated by05three slabs of different dielectric materials of thickness $0.3,0.4 \& 0.3 \mathrm{~mm}$ withrelative permittivities of $3,2.5$ and 2 respectively. Calculate the capacitance ofeach material and the voltage across them if the supply is 200 v .
(b) Derive the equation for the co-efficient of coupling of two magnetically coupled 05 coils A and B.
(c) Compare Electric and Magnetic circuits.04
SECTION - II
Q. 4 (a) Define following terms in connection with A.C wave forms : 07(i) Frequency (ii) Phase difference (iii) Time Period(iv) form factor(v) Peak factor (vi) R.M.S.Value (vii) Average Value
Q. 5 (a) Prove that current through pure inductor is always lagging by 90° to its voltage and 05 power consumed is zero.
(b) Discuss resonance in R-L-C series circuits. Explain how pf, X_{L} and R vary with 05 frequency.
(C) State the effect of increase in Q on bandwidth. 04
OR
Q. 5 (a) Define the term (i) reactance (ii) inductive reactance (iii) capacitive reactance and 05explain how it depends on frequency in an A. C. circuit?
(b) Three impedance $\mathrm{Z} 1=5-\mathrm{j} 10 \mathrm{~F}, \mathrm{Z}_{2}=2 \mathrm{fj} 20 \mathrm{~F}$ and $\mathrm{Z} 3=4+\mathrm{j} 2 \mathrm{~F}$ are connected in parallel 05If the total current is 20A, Find the oruttenteshared by each.
(C) Compare series and parallel resomanterits. 04
Q. 6 (a) Draw and explain the equivalentecirctit olsingke phase transformer. 05
(b) Draw and explain the vector diagramswen transformer is on ON-Load condition. 05
(C) Three inductive coils, each having resistarce of 15 ohm and an inductance of 040.03 H connected in series, are connected 1. In star and 2. In delta to a 3 phase$400 \mathrm{v}, 50 \mathrm{~Hz}$ supply. Calculate in each case line current and total power absorbed.
OR
Q. 6 (a) Explain the method of measuring 3-Ф power by two wattmeters. 05
(b) Derive the relation between phase and line values of voltages and currents in 05balanced star connection. Draw complete phasor diagram of voltages and currents.(C) Derive the E.M.F equation of a transformer.04

